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Two complementary descriptions of intermittency
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We describe two complementary formalisms designed for the description of the probability density function
~PDF! of the gradients of turbulent fields. The first approach, we call it adiabatic, describes the PDF at the
values much less than dispersion. The second, instanton, approach gives the tails of the PDF at the values of
the gradient much larger than dispersion. Together, both approaches give a satisfactory description of gradient
PDFs, as illustrated here by an example of a passive scalar advected by a one-dimensional compressible
random flow.@S1063-651X~98!50602-2#

PACS number~s!: 47.10.1g, 47.27.2i, 05.40.1j
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Probably the most striking feature of developed turb
lence is its intermittent spatial and temporal behavior. T
structures that arise in a random flow manifest themselve
high peaks at random places and at random times. The in
vals between them are characterized by a low intensity a
large size. Rare high peaks are responsible for probab
density function~PDF! tails, while the regions of low inten
sity contribute PDF near zero. That physical picture prom
an attempt to describe intermittency at the level of a sing
point PDF by two complementary approaches. The first
proach was recently introduced to describe rare strong fl
tuations as optimal fluctuations realizing probability extre
@1–5#. Called an instanton approach, this formalism is ba
upon a path-integral representation of conditional proba
ity, with optimal fluctuations being saddle points in the int
gral. A counterpart to the instanton approach is sugge
here for the description of the gradient PDF at small valu
the approach is just an adiabatic one when high-order sp
derivatives are consistently neglected.

The center anomaly and tails of the gradient PDF are
sides of the same coin called intermittency, which is
main target in modern turbulence studies. In this Rapid Co
munication, we demonstrate how both methods applied
gether give a consistent description of the gradient P
Note that the intermediate part of the PDF~which is beyond
our approaches! where the matching of the asymptotics o
curs is not that interesting because it is nonuniversal,
depends on the particular form of the pumping correlat
function. The central peak and the tail are robust; their fo
provides the main information on the probability of both t
main body of the events and strong fluctuations.

Let us show how such a description can be developed
using, probably, the simplest~yet nontrivial! turbulent prob-
lem of a passive scalaru(x,t) advected by one-dimensiona
random flowv(x,t) that is smooth in space and white in tim
~this is a compressible version@6# of a well-known Kraich-
nan model@7#!:

] tu1v¹u5kDu1f. ~1!

Both the velocityv and the source functionf are supposed
to be homogeneous, Gaussian, andd correlated in time:
^f(x,t)f(x8,t8)&5x(ux2x8u)d(t2t8), where x is some
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function that decays on a scaleL, the valuex(0)5P is the
flux of u2. The correlation function of the velocity may b
defined by two parameters, typical velocityV and correlation
lengthLv :

^v~x,t !v~x8,t8!&5@VLv2VLv
21~x2x8!2#d~ t2t8!. ~2!

When studying a simultaneous statistic, the coordina
independent part drops out. We assumeLv@L.

Let us first implement a simple adiabatic approach
glecting the diffusion term. Then, for the single-point PD
P(v,t)5^d@ux(x,t)2v#&, one obtains a closed Fokke
Planck equation

2
]P
]t

5~Dv21T!
]2P
]v2 14Dv

]P
]v

12DP, ~3!

where we denoteT5x9(0) andD5VLv
21 the variances of

fx and vx , respectively. That equation has an equilibriu
steady solution

P~v!}~T1Dv2!21 ~4!

that is expected to be applicable forv2!P/k. Since
T.P/L2 and the Pe´clet number Pe25DL2/4k is assumed to
be large, then Eq.~4! has a wide interval of validity. Note
that T/D is a square gradient produced by the pumping d
ing the typical stretching timeD21. For Pe@1, T/D!P/k.
Limiting solutions obtained atv2@T/D and atv2!T/D by
a time-separation procedure@8# coincide with Eq.~4!.

Let us now describe the tail of the probability dens
functionP(v) at v2@P/k. It is clear from Eq.~2! that the
correlation functions of the strain fields5vx arex indepen-
dent, that is,s can be treated as a random function of timet
only. To exploit that, it is convenient to pass into the como
ing reference frame, that is, to the frame moving with t
velocity of a Lagrangian particle of the fluid@1,3#. The
Martin-Siggia-Rose actionI for thenth order moment of the
gradientux is @8#

I5E dt dx p] tu2E Edt2
in

2
ln~ux!

2 ~5!
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E5E dxp~2sx]xu1k]x
2u!2

i

2 E dx1dx2p1x~x12!p2

2
i

4D
~s2D !2. ~6!

Assuming n@1, we shall calculate the moment in th
saddle-point approximation̂ux

n&5exp(Iextr); see@1–5# for
the details. Here,Iextr is to be calculated on the flow con
figuration ~optimal fluctuation or instanton! that has to sat-
isfy extremum equations for the action:

] tu1sx]xu2k]x
2u52 i E dx8p~ t,x8!x~x2x8!, ~7!

] tp1s]x~xp!1k]x
2p52yd~ t !d8~x!, ~8!

s2D52iD E dxpx]xu. ~9!

Here y52 in/ux(0,0). For calculations, it is more conve
nient to use this auxiliary parameter instead ofux(0,0). The
boundary conditions areu(x,2`)50 andp(x,10)50 @1#.
The solution of Eqs.~7! and~8! can be sought in the follow
ing form:

u5 f „t~ t !,xAw~ t !…, p5Aw~ t !g„t~ t !,xAw~ t !…, ~10!

] tw522sw, ] tt52w, w~0!51, t~0!50.
~11!

The functionsf andg satisfy the following equations:

]tg2k]j
2g5yd~t!d8~j!, ~12!

]t f 1k]j
2f 5

i

w~t!
E

2`

`

dj8g~t,j8!xS ~j2j8!

Aw~t!
D . ~13!

The solution can be found in the Fourier representation

g~t,k!5 ikye2kk2t, ~14!

f ~t,k!52kyE
t0

t dt8

Aw~t8!
x„kAw~t8!…ekk2~t22t8!,

~15!

s2D522Dy2E
t0

t dt8

Aw~t8!
E

2`

` dk

2p

3k2~122kk2t!x„kAw~t8!…e22kk2t8. ~16!

Heret0 is the maximal value fort, which is determined by
the moment when the following integral diverges:

t~t!52E
0

t dt

w~t!
. ~17!

In the following we will work in the dimensionless units
We put D51, P[x(0)51, andL51. Thenk51/(4 Pe2),
where Pe is the Pe´clet number. We believe Pe@1. Calculat-
ing ]xu(0,0) from Eq. ~15! we obtain the following self-
consistency condition fory:

n

uyu2
5E

0

t0 dt

w2~t!
fS t

Pe2w~t! D , ~18!

f~x!5E
2`

` dk

2p
k2x~k!expS 2

k2x

2 D . ~19!

The functionf(x) has the following asymptotes:f(x)→1
asx→0 andf(x);x23/2 asx→` if x(k50)Þ0. Note that
x(k)>0; hencef(x) is a monotonic decreasing function
One may keep in mind some particular form ofx(x), say,
exp(2x2L2/2). Then,f(x)5(11x)23/2.

Now we derive a closed equation that describes the e
lution of w, which is the square root of the solution inver
width. One can do that directly from Eq.~16!, substituting
there s5w8(t)/2, which is the consequence of Eq.~11!.
One obtains an integral equation that is equivalent to so
third-order ordinary differential equations. The order c
then be reduced by 1 due to the conservation law~6!. How-
ever, it is more instructive to derive the same equation onw
in a different manner: since we are looking for the extrem
of the action~5!, we can substitute there all the fields as t
functionals ofw and then make a variation with respect tow.
We have

iI5
n

2
lnFn

e E
0

t0 dt

w2~t!
fS t

Pe2w~t! D G
2

1

4 E
0

t0 dt

w~t! S 1

2
w821D 2

. ~20!

Varying with respect tow, we obtain

w92
w82

2w
1

2

w
2

8uyu2

w2 fS t

Pe2wD2
4uyu2t

Pe2w3 f8S t

Pe2wD50.

~21!

Equation~21! can be rewritten as a Hamiltonian system w
the momentumz5w8/w and the Hamiltonian

H5
z2w

2
1

4uyu2

w2 fS t

Pe2wD2
2

w
. ~22!

Initial conditions for Eq. ~21! are w(0)51 and
w8(0)522(2n21). The latter is readily derived from Eqs
~16! and ~18!. We should also satisfy a final condition. In
deed, Eqs.~17! and~20! requirew8→2 ast→t0 ; otherwise,
the integral contribution to the action is infinite. Our aim
to find such a value ofy that the solution of Eq.~21! satisfies
the relation~18!. In other words, we can divide the task in
two parts: first, to find the solution of Eq.~21! with arbitrary
y and the given boundary conditions; second, givenw, to
solve the algebraic equation~18!, which determinesy. Note
that finite positive value ofw8 at t→t0 implies t05`.

Let us start the first part of our program, which is solvin
Eq. ~21!. Since Eq.~22! explicitly depends ont, thenH is
not conserved and Eq.~21! cannot be solved explicitly for an
arbitraryf. In the limit n!Pe2, it is possible, nevertheless
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to describe the solution with enough detail to recover
dependence on the parametersn and Pe.

The evolution ofw can be divided into three parts. Durin
the initial stage, whent is close to zero,w is of order unity.
Therefore, Pe2w@t and we can substitutef in Eq. ~22! by
its asymptotic value 1. Thus, during that stageH is a con-
stant, which we denote as H0 . One finds
H05H(0)52(2n21)22214uyu2. Sincen@1 and, as we
shall see below,y!1, we haveH0'8n2. The equation forw
can then be readily derived from Eq.~22!,

w852A412H0w28uyu2/w. ~23!

Now let us consider the final stage. Sincew8→2 ast→`,
we can writew'2t. It givest/(Pe2w)'1/(2 Pe2)!1. Thus,
as for the first stage, we can replacef by 1, and therefore the
energy is a constant. It follows from Eq.~22! that during that
stageHw!1. Hence,w satisfies the following equation:

w85A428uyu2/w. ~24!

Since w8 is negative during the first stage and positi
during the third one, then it has to turn into zero at so
reflection timet* . Around that time, there should exist a
intermediate part of evolution, which matches the two abo
asymptotes. We will see below that this stage makes
main contribution to Eq.~18!. During that stage one ha
t/(Pe2w)*1, so thatH is not conserved but decreases fro
8n2 to 0. It will be important for us thatH is a decreasing
monotonic function oft, which becomes obvious after on
differentiates Eq.~22!.

Let us make estimations of the parameters during
intermediate stage. From Eq.~23! it is easy to find thatw
diminishes from 1 to a substantially smaller value during
time t* .1/n. To havet/(Pe2w) of order unity by the be-
ginning of the second stage, there should bew;1/(n Pe2).
Looking at Eq.~22!, we observe that, sinceH is a decreasing
function of t, the left-hand side of Eq.~22! is less than
H0'8n2. On the other hand, the term 2/w on the right-hand
side can be estimated asn Pe2. If n!Pe2, we can disregard
the left-hand side. We assume in addition that the duratio
the second stage is much less thant* . Then, we can substi
tute t by t* in the argument off and obtain the equation

w82542
8uyu2

w
fS t*

Pe2wD . ~25!

We do not take the square root, sincew8 changes sign during
that part of the evolution, so that both branches of Eq.~25!
are pertinent. Actually, Eq.~25! is valid for all t.t* , since
at w@t* /Pe2 it turns into Eq.~24!. If our assumption abou
the duration of the second stage is correct, the transi
region is described correctly too. On the other hand, if
add to Eq.~25! the termH0w, which is small in the transi-
tion region, the equation thus obtained will correctly descr
the evolution ofw at all timest,t* .

Therefore, we have found that under the assumption
short transition region it is possible to reduce Eq.~21! to the
equationsw852Ac1(w) at t,t* and w85Ac2(w) at
t.t* , where
s

e

e
e

at

e

of

n
e

e

a

c1541H0w2
8uyu2

w
fS t*

Pe2wD ,

c2542
8uyu2

w
fS t*

Pe2wD .

Now we can continue with the second task, that is, so
ing Eq. ~18!. We introduce alsow* 5w(t* ) at the moment
of reflection. Since att5t* the derivative ofw is zero, then
we find from Eq.~25!

uyu25
w*

2fS t*
Pe2w*

D . ~26!

Now Eq. ~18! can be rewritten in the following form:

2n

w*
fS t*

Pe2w*
D5E

w
*

1 dw

w2Ac1~w!
fS t*

Pe2wD
1E

w
*

` dw

w2Ac2~w!
fS t*

Pe2wD . ~27!

Estimating contributions into the integrals from the fir
and third time intervals, one can find that alone, they are
small to satisfy Eq.~27!. On the other hand, it is easy to se
that, if the derivative ofc1,2 at the pointw* is not small
enough, the second stage also does not contribute to th
tegrals in Eq.~27!. The only way to have a solution is t
make the derivatives small. Thenc1,2'c1,29 (w* )(w
2w* )2/2 in a wide interval, and both integrals in Eq.~27!
logarithmically diverge, with a cutoff on the nonzero valu
of the first derivative. Since we can makec8(w* ) arbitrarily
small by a small change ofw* , the solution exists. Equating
the derivative ofc to zero, one finds thatw* is close to
at* /Pe2, wherea is some number of the order unity, whic
depends on the form off that is of the pumpingx. The
deviation of the first derivative from zerod is determined by
Eq. ~27!:

nw* 5A 2

c9~w* !
ln

1

d
. ~28!

One finds lnd21}n. The smallness ofd justifies our assump-
tion on a short intermediate stage. Thus, we have shown
solution of Eq.~18! exists, anduy2u;1/(n Pe2), which cor-
responds toux(0,0);n3/2Pe. This makes the main contribu
tion to ^ux

n&}n3n/2Pen, since the integral term in the actionI
is ;n on our instanton solution. Such moments can be
sembled into the following tail of the PDF ofv5ux :

ln@P~v!#}2~kv2/P!1/3. ~29!

The correspondence between the tail~29! and then3n/2 result
can be easily established by direct calculation of the integ
*dvvnP(v) in the limit n@1. Note that the tail does no
depend on the strain amplitudeD.

Let us describe the above instanton solution in m
physical terms. The instanton corresponds to some opti
process making the main contribution in^ux

n&. It produces a
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large gradient, which compensates for the small probab
of such a process. Looking at~10,15!, we can distinguish the
three stages ofu evolution. During the first one, starting a
t52`, the strains'D stretches small-scale initial pertu
bation up to the width of orderL and the force prepares som
profile of u, which has the amplitude of orderAP/D. The
second stage starts whenw is close tow* . Thens!D; we
can disregard both the advective and diffusive terms. Th
fore, the width ofu does not change during that stage, wh
the amplitude grows due to the force. Of all realizations
the force, the constant one is preferred, since it gives
fastest growth. Then,u increases asft. The weight of such
a process is exp(2f2t2t/2). The second term in the expo
nent is the probability of having smalls during the timet.
Then we can find thatf;1 and t}n ~note that the second
stage is long in terms oft, yet it was short in terms oft!. By
the end of this stage,ux}n. And finally, during the last stage
we can disregard the force. The profile having the amplitu
n and widthL by the beginning of the stage is compress
by the large negatives, which can be estimated a
s;2Dn. The duration of that stage~and the final width! is
determined by diffusion:sx]xu;k]x

2u at the end. Then, the
width of u(x) is Ak/Dn, while the amplitude isnAP/D;
therefore the final answer for^ux

n& is }n3n/2(P/k)n/2, which
corresponds to Eq.~29!. To summarize, the optimal fluctua
tion that makes the main contribution in^ux

n& starts from an
infinitesimal fluctuation that is initially stretched; then it h
a long stage of suppressed advection when the amplitud
u(x,t) grows even when its spatial scale does not decre
and then it contracts quickly.

Let us stress that the instanton describes a very spe
configuration of the fields. For any other solution that do
not satisfy the correct self-consistency condition, there is
such long intermediate stage of growth. If the parame
were not fitted to guarantee the existence of this long sta
either larges would bring a singularity in the solution orux
would not be large enough att50.

Note that the scalar itself has an exponential PDF tail;
fact that the gradient PDF is less steep was correctly at
s.
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y
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e
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uted in@8# to the fluctuations of the diffusion scale. One m
explain the 2/3 stretched exponent in the following simp
abbreviated way, clarifying the physics of the phenome
Due to diffusion, the local gradient can be thought of as
product of a scalar fluctuation and inverse diffusion sca
The former has an exponential PDF tail@8#, while the latter
is proportional to the local stretching rate, which is Gaussi
Therefore, ^vn&;^u2&n/2nnr d

2nnn/2, which corresponds to
Eq. ~29!. Also, instanton formalism provides an instructiv
insight into the relation between the scalar and its grad
on the optimal fluctuation: comparing the second and th
terms in Eq.~7!, one gets for the current dissipative sca
r d}Ak/uD; substituting that intoux.u/r d , we obtainux

}u3/2, so that exponential tail foru has to correspond to th
2/3 stretched exponential for the gradient.

To conclude, the gradient’s PDF is given by Eq.~4! for
kv2/P!1 and by Eq. ~29! for 1!kv2/P!Pe3, which
agrees with the results found by a time-separation formal
@8#. Speaking about generalizations, it is likely that the on
dimensional instanton described here may be relevant f
multidimensional case, both compressible and incompre
ible, due to the universality of a locally flat ramp-and-cli
structure discussed in@9–11#. Note that the stretched expo
nential tail is what one expects for the steady gradient’s d
tribution ~which is possible only when diffusion is presen!
@12#, contrary to unsteady log-normal distribution whic
takes place without diffusion@7#.

We are indebted to M. Vergassola for numerous use
explanations and helpful remarks. We are grateful to V. L
edev for a valuable remark made upon reading the first d
of the paper. We thank M. Chertkov and I. Kolokolov fo
useful discussions. We thank U. Frisch and L. Biferale
organizing an inspiring workshop at Nice where this wo
was started. G.F. thanks K. Gawedzki for kind hospital
and a very stimulating scientific atmosphere at Bures-s
Yvette, where this work was continued. The work was su
ported by the Israel Science Foundation and the Mine
Center for Nonlinear Physics at the Weizmann Institute.
E

@1# G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, Phy
Rev. E54, 4896~1996!.

@2# V. Gurarie and A. Migdal, Phys. Rev. E54, 4908~1996!.
@3# E. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebede

Phys. Rev. Lett.78, 1452~1997!.
@4# M. Chertkov, Phys. Rev. E55, 2722~1997!.
@5# G. Falkovich and V. Lebedev, Phys. Rev. Lett.79, 4159

~1997!.
@6# M. Vergassola and A. Mazzino, Phys. Rev. Lett.79, 1849
~1997!.
@7# R. H. Kraichnan, J. Fluid Mech.64, 737 ~1974!.
@8# M. Chertkov, I. Kolokolov, and M. Vergassola, Phys. Rev.

56, 5483~1997!.
@9# K. R. Sreenivasan, Proc. R. Soc. London, Ser. A434, 165

~1991!.
@10# M. Holzer and E. Siggia, Phys. Fluids6, 1820~1994!.
@11# A. Pumir, Phys. Fluids6, 2118~1994!.
@12# B. Shraiman and E. Siggia, Phys. Rev. E49, 2912~1994!.


